

Equilibrium Snapshot

Game Levels

The Challenge Levels increase in rigor and complexity.

- 21 Challenge Levels*
- *The first 4 levels are Tutorial levels.

Sandbox*

The Sandbox is an exploratory learning space for extended practice and review of phase change.

- 14 Achievements
- * Players must complete Challenge Levels 1-4 before unlocking the Sandbox

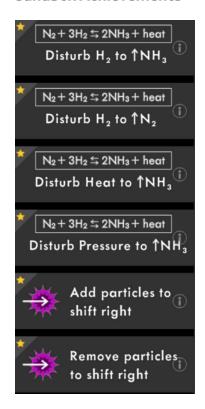
Integrated Concepts

- All reactions can proceed in the forward and reverse directions.
- At equilibrium, the rate of the forward and reverse reactions are equal
- When a system at equilibrium is distrubed by a change in concentration, pressure, or temperature, it will shift to reestablish equilibrium

General Information

Equilibrium game level layout

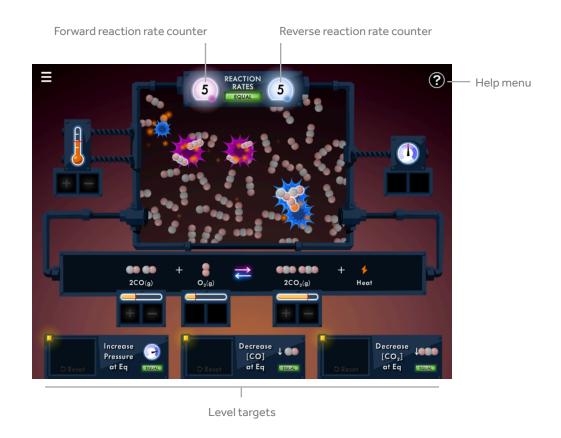
Skills



Equilibrium: Overview

Equilibrium Sandbox

Sandbox Achievements



Equilibrium: Overview (cont.)

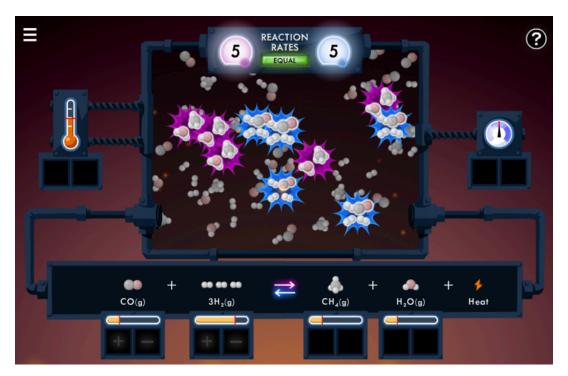
Equilibrium Challenges

Level 1-21 GOAL: Disturb the reaction to cause changes to the system at equilibrium.

Equilibrium: Chemistry Connections

CHEMISTRY CONCEPT:

All reactions can proceed in the forward and reverse directions.



Forward reaction:
$${\rm CO(g)} + {\rm H_2O} \, (\rm g) \rightarrow {\rm CO_2(g)} + {\rm H_2(g)} \label{eq:comparison}$$

Reverse reaction:
$$CO_2(g) + H_2(g) \rightarrow CO(g) + H_2O(g)$$

CHEMISTRY CONCEPT:

At equilibrium, the rate of the forward and reverse reactions are equal.

At equilibrium, both the forward and reverse reactions are happening.

CHEMISTRY CONCEPT:

When a system at equilibrium is disturbed by change in concentration, it will adjust to reestablish equilibrium.

Change in Reactants

Increase reactants

Return to Equilibrium (shifts right)

Decrease reactants →

Return to Equilibrium (shifts left)

CHEMISTRY CONCEPT:

When a system at equilibrium is disturbed by change in concentration, it will adjust to reestablish equilibrium (cont.).

Change in Products

Increase products

ENCHON 5

RACION 5

RACION 1

RECORD THE STATE OF THE STA

Return to Equilibrium (shifts left)

Decrease products \longrightarrow

Return to Equilibrium (shifts right)

7

CHEMISTRY CONCEPT:

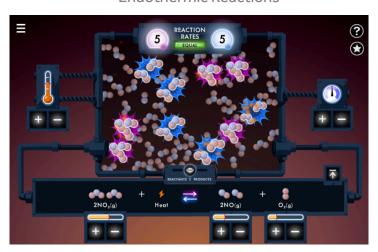
When a system at equilibrium is disturbed by change in temperature, it will adjust to reestablish equilibrium.

Exothermic Reactions

Increase temperature → *Return to Equilibrium*

(shifts left)

Decrease temperature → Return to Equilibrium (shifts right)



Decrease products

CHEMISTRY CONCEPT:

When a system at equilibrium is disturbed by change in temperature, it will adjust to reestablish equilibrium (cont.).

Endothermic Reactions

Increase temperature → *Return to Equilibrium* (shifts right)

Decrease temperature → Return to Equilibrium (shifts left)

Decrease products

CHEMISTRY CONCEPT:

When a system at equilibrium is disturbed by change in pressure, it will adjust to reestablish equilibrium.

Increase pressure \longrightarrow increase chance of collisions on side with more molecules \longrightarrow reaction shifts to direction with **fewer molecules**

Decrease pressure \longrightarrow decrease chance of collisions on side with more molecules \longrightarrow reaction shifts to direction with **more molecules**

